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1. (10%, 10%)
(@) Einstein’s velocity addition rule. The transformations between two inertial systems S
and S are X=y(x—vt) and t_:;/(t—vx/cz). v is the relative speed of the system
S with respect to the system S. Find the relation between the two velocities
(T=dx/dt and u=dx/dt).
(b) Two lumps of clay, each of (rest) mass m, collide head-on each at 4/5c. They stick

together. Find the mass (M) of the composite lump? Why the total mass was not
conserved?

2. (10%, 10%)
(@) Show that (E-B) is relativistically invariant.
(b) Suppose that in one inertia system B=0 but E=0 (atsome point P). Is it possible
to find another system in which the electric field is zero at P.

E.,=E, E,=y(E,-VvB,), E,=y(E,+VB))

_ Y} — \'
Bx:Bx’ By:}/(By—'_C_zEz)’ Bz:}/(Bz_C_zEy)

3. (8%, 12%)
(a) Write down the Retarded scalar and vector potentials (4%)
(b) Show that the retarded scalar potential satisfies the inhomogeneous wave equation.



4. (10%, 10%) Consider a coaxial cable, of length d, consisting of an inner conductor (radius
a) and an outer conductor (radius b).

Acos(kz — at) .

(@) If the electric field is E(s,¢,z,t) = , find the magnetic field and the

Poynting vector (i.e. the energy flux).

(b) Consider the resonant cavity produced by closing the two ends of the coaxial
waveguide. Find the lowest resonant frequency for TEM mode and calculate the Poynting
vector.

5. (10%, 10%) Consider a TE;o wave propagates along the z-axis. The incident wave hits an
E-plane discontinuity at z=0 as shown in the figure below.
(a) Write down the electric and magnetic fields in region | and |1, respectively.
(b) Calculate the reflection coefficient (T = transmitted power /incident power )

[Hint: Incident wave E,(z,t) = E,e'“*y, B,(z,t)= L E, "V + (can be omitted)z .
Vl




1.
(@ X=y(x—vt)=dx =y(dx—vdt),
T = y(t-vx/c?) = dt = y(dt—vdx/c?)

) y(dx—vdt)z _ (U—v)z where ﬁ:u_)u:%
dt y(dt—vdx/c?) (1-vu/c?) dt 1+0v/c
(b) Example 12.7
2
before: E = _ame” relativistic energy, u :ﬂc
Vi-u®/c? 5
2
after: E = Mc® = 10me 10m

S M="——>2m
3

Kinetic energy is converted into rest energy, so the total mass increases.

2. HW 12.46

(a)

E,=E, E =y(E,~VB,), E, =y(E,+B)

B -B., B=y(B +2E) B =B -—“LE
x — Pxo y_7/( y+C_2 z)’ 2_7/( z_C_z y)

E-B=E,B,+/(E, ~VB,)¥(B, +—E)+(E, +vB,)(B,~—E,)
C C

2
2 2

:EXBX+72(EyBy—V—ZBZEZ+12EyEZ—vByBZ+EZBZ—V—zEyBy+vByBZ—leyEz))
C c C C
:EXBX+7/2(1_12)(EyBy+EZBZ)
C
=E-B
So it is relativistically invariant
(b) B=0 but E=0

E.=E, E,=y(E,), E,=y(E,)

X X

_ — \Y = Vv
Bx :0’ By :7(C_2Ez)' Bz :7(?Ey)

It is impossible to find another system in which the electric field is zero at P

3. Griffith page 424-425, lecture note Chap. 10 pp.14-16

(a)
scalar V(r,t)= LjMdr’
4re, 2

t =t - (called the retarded time)
' C

vector  A(r,t) :f—OIMdT'

T

/7/

(b) vV = 1 J‘V(p(r"tr)JdZJ_ 1 J‘ﬁ/(vp)_zp(vﬁ/)dz_r

4re, n 4re, n

Retarded potentials:




Using quotient rule: V(i] = M

g g

Vp=Vp(r’,tr)=a—thr =p_—1v7/, V=4
o, c
W= j[p” p”’]dr
47[80 Cv

VoWV =V = L[y 2 P
4re, n

[ +”“]—Ev (p= )+v (p—)

1~ . . ~
:E[?'VP+PV'T]+[j'VP+PV'7]

vp:vp(r',t,)=g—tpw =5 1% P and vp="P:
. C

A~ o1 A 3
V'—:—Z and v—2:4ﬂ'5 (%)

2% Tz 2%

e B e N R Y eW Ay )

A~ C Co
1. 3
——C—2p+47zp5 (»)
j[— B+4p5%()]d 7" = j P gp_pPrt)
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4. HW 9.38
(a)
E(s..2,1) = Acos(kz—a)t)§ ~ B(s.7,1) = Acos(:—a)t)(b
Szi(ExB) ? cos (kz a)t)A < = A% cos (kz cot)A
Ho HoCS’ HoCS®
E(s,4,2=0and d,t) :AS%(kz)sin(a)t)i k =§
(b) new boundary conditions
B(s,4,2,t) = Aci;s(kz)cos(wt)(f)

k=Z1=2d = f="
d 2d

-1 (ExB)- Azcos(kz)fin(kz)

Ho 0

cos(at)sin(wt)z




5. (a)

_ i e 1= ks
Incident wave: E,(z,t)=E,e'“ My, B,(z,t)=-—E,e®& x
Vl

- ~ . o o~ 1~ . ~
Reflected wave: Eg(z,t) = E,ze' " Vy, By(z,t) = —E,.e' V%
Vl

Transmitted wave: E(z,t) = E,e'®* ™y, B(z,t)= L Eyre'® %
V2
(b) Boundary conditions: E; —E} =0 and iB{’ —iB’Z’ =0
H M,
~ ~ ~ 1 = =~ RZ =
Eoi +Eor = Eor and (Eo) —Egr) - Epr =0
Vl /u2
- 1- B =
E()R = (ﬁ)EOI V. ~
5 where ,[3Emk2
E - E H,0
0T (1+ﬂ) 01
~ 1 2 1 2 2 2
1, E<S-Z>=EV1€1EOI cosd,, |, :E\lngEOT cosé; =ﬁ(m) 1,
I 2
T=T=p—)
I 1+p



